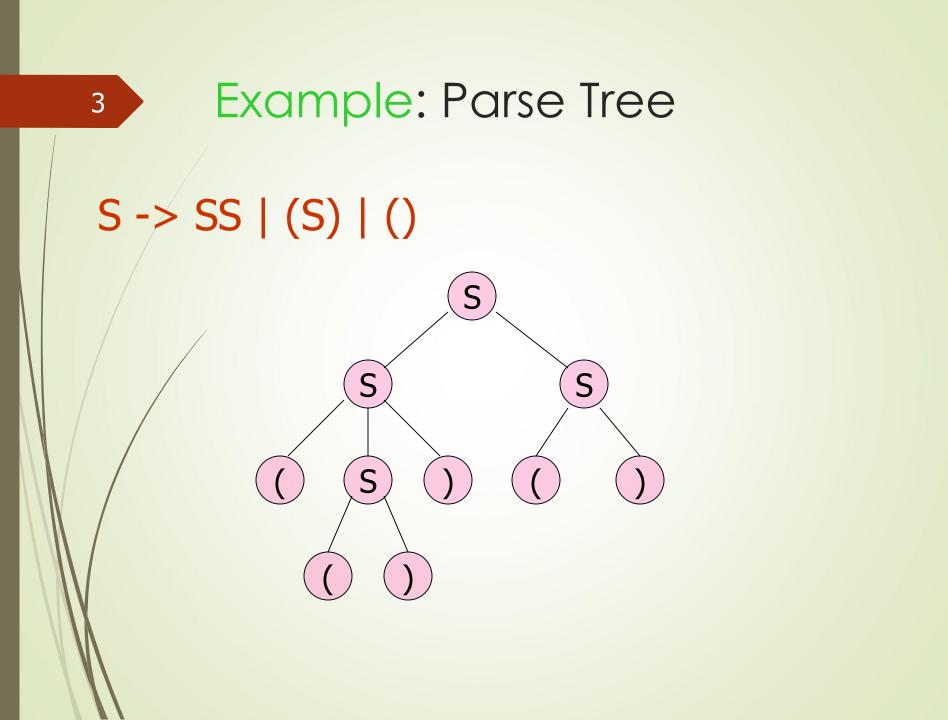
Parse Trees

1

Dr. Ranjit Kumar

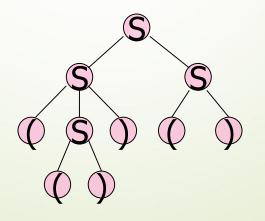
Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- Leaves: labeled by a terminal or ϵ .
- Interior nodes: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.



Yield of a Parse Tree

- The concatenation of the labels of the leaves in leftto-right order
 - That is, in the order of a preorder traversal.
 - is called the yield of the parse tree.
- Example: yield of is (())()



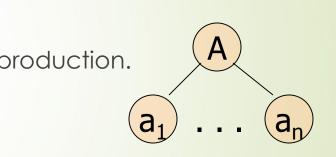
4

Parse Trees, Left- and Rightmost Derivations

- For every parse tree, there is a unique leftmost, and a unique rightmost derivation.
- We'll prove:
 - 1. If there is a parse tree with root labeled A and yield w, then $A = \sum_{lm}^{*} w$.
 - 2. If $A = \sum_{lm}^{*} w$, then there is a parse tree with root A and yield w.

Proof – Part 1

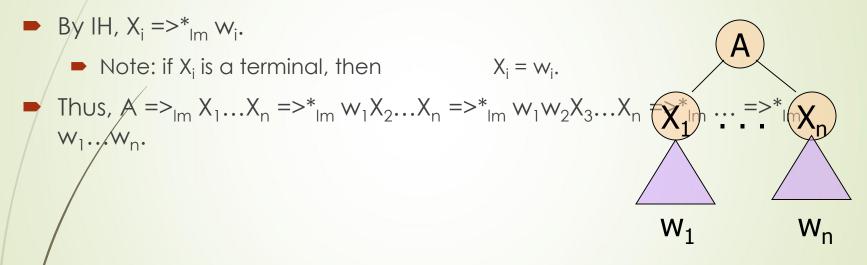
- Induction on the height (length of the longest path from the root) of the tree.
- Basis: height 1. Tree looks like
- $A \rightarrow a_1 \dots a_n$ must be a production.
- Thus, $A = \sum_{lm}^{*} a_1 \dots a_n$.



7

Part 1 – Induction

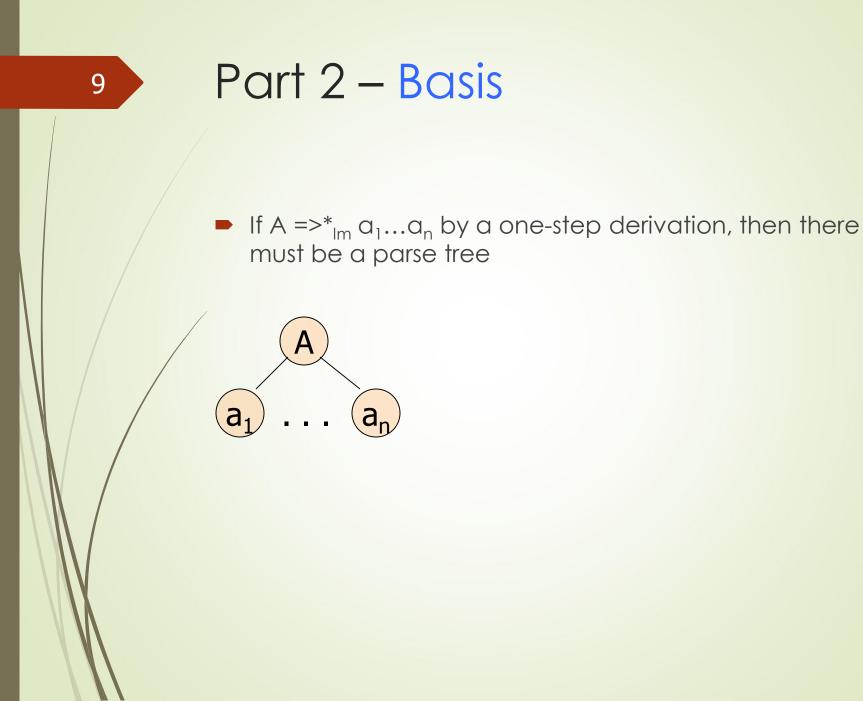
Assume (1) for trees of height < h, and let this tree have height h:</p>



8

Proof: Part 2

- Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.



Part 2 – Induction

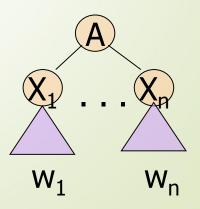
- Assume (2) for derivations of fewer than k > 1 steps, and let A =>*_{Im} w be a k-step derivation.
- First step is $A = \sum_{lm} X_1 \dots X_n$.
- Key point: w can be divided so the first portion is derived from X₁, the pext is derived from X₂, and so on.

If X_i is a terminal, then $w_i = X_i$.

Induction – (2)

11

- That is, $X_i = \sum_{im}^{*} w_i$ for all i such that X_i is a variable.
 - And the derivation takes fewer than k steps.
- By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield w_i.
- Thus, there is a parse tree



¹²arse Trees and Rightmost Derivations

- The ideas are essentially the mirror image of the proof for leftmost derivations.
- Left to the imagination.

Parse Trees and Any Derivation

- The proof that you can obtain a parse tree from a leftmost derivation doesn't really depend on "leftmost."
- First step still has to be $A => X_1...X_n$.

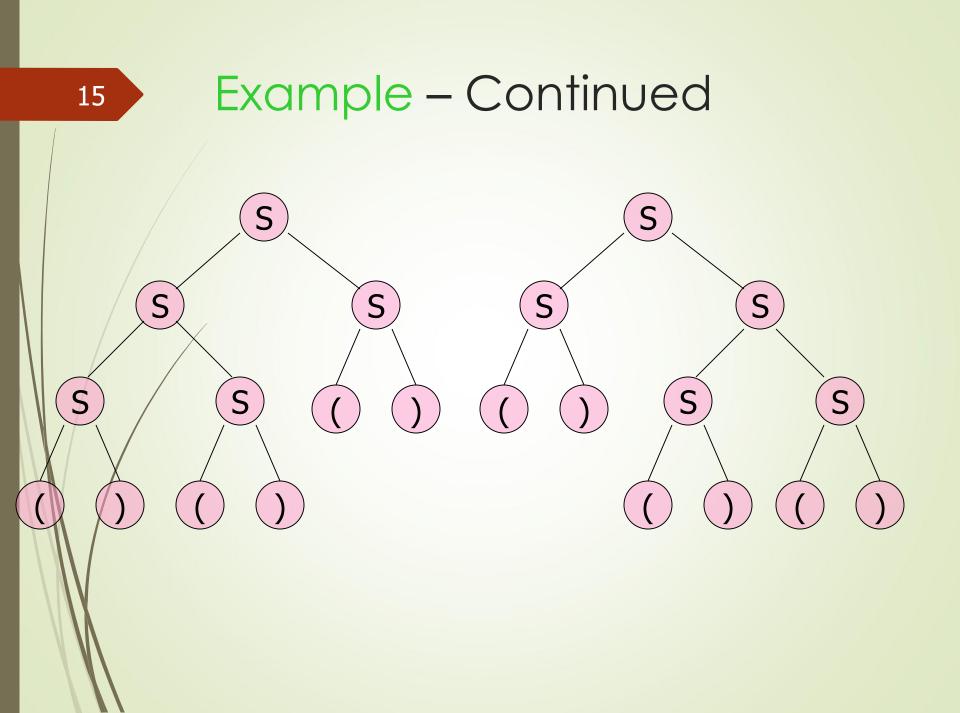
13

And w still can be divided so the first portion is derived from X_1 , the next is derived from X_2 , and so on.

14

Ambiguous Grammars

- A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- Example: $S \rightarrow SS \mid (S) \mid ()$
- Two parse trees for ()()() on next slide.



Ambiguity, Left- and Rightmost

- If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, etc. - (2)

- Thus, equivalent definitions of "ambiguous grammar" are:
 - 1. There is a string in the language that has two different leftmost derivations.
 - 2. There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

For the balanced-parentheses language, here is another CFG, which is unambiguous.

B, the start symbol, derives balanced strings.

R generates strings that have one more right paren than left.

18

 $B \rightarrow (RB | \epsilon$

Example: Unambiguous Grammar

$B \rightarrow (RB | \epsilon R \rightarrow) | (RR$

- Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.
 - If we need to expand B, then use B -> (RB if the next symbol is "(" and c if at the end.
 - If we need to expand R, use R ->) if the next symbol is ")" and (RR if it is "(".

Remaining Input: (())() Steps of leftmost derivation:

В

Next symbol

 $B \rightarrow (RB | \epsilon R \rightarrow) | (RR$

Next

symbol

The Parsing Process

Remaining Input: ())() Steps of leftmost derivation:

B (RB

 $B \rightarrow (RB | \epsilon \qquad R \rightarrow) | (RR$

Next

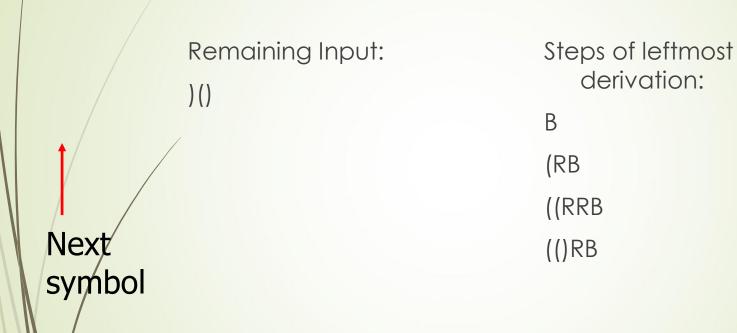
The Parsing Process

Remaining Input:))() symbol

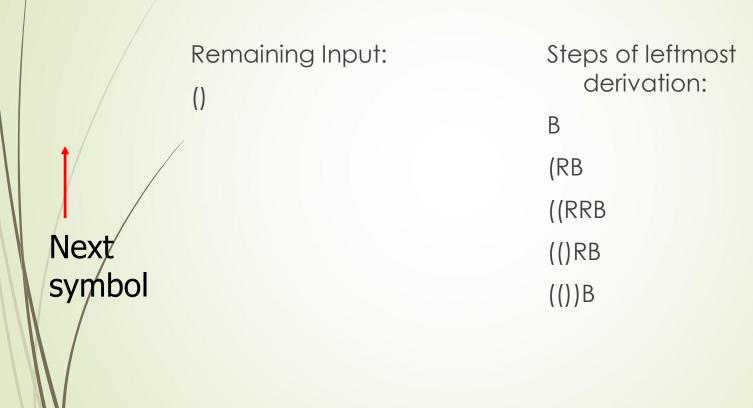
Steps of leftmost derivation:

В (RB ((RRB

 $B \rightarrow (RB | \epsilon$ R ->) | (RR



 $B \rightarrow (RB | \epsilon \qquad R \rightarrow) | (RR$



 $B \rightarrow (RB | \epsilon R \rightarrow) | (RR)$

Remaining Input:	Steps of leftmost derivation:	
	В	(())(RB
	(RB	
	((RRB	
Next	(()RB	
symbol	(())B	
Next symbol	(RB ((RRB (()RB	

 $B \rightarrow (RB | \epsilon R \rightarrow) | (RR)$

Remaining Input:	Steps of leftmost derivation:	
	В	(())(RB
	(RB	(())()B
	((RRB	
Next symbol	(()RB	
symbol	(())B	

 $B \rightarrow (RB | \epsilon R \rightarrow) | (RR)$

27

The Parsing Process

Remaining Input:	Steps of leftmost derivation:	
	В	(())(RB
	(RB	(())()B
	((RRB	(())()
Next	(()RB	
symbol	(())B	

R ->) | (RR B -> (RB | ε

LL(1) Grammars

- As an aside, a grammar such B -> (RB | ∈ R ->) | (RR, where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).
 - "Leftmost derivation, left-to-right scan, one symbol of lookahead."

LL(1) Grammars - (2)

Most programming languages have LL(1) grammars.

LL(1) grammars are never ambiguous.

30

Inherent Ambiguity

- It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.
- Unfortunately, certain CFL's are inherently ambiguous, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

The language {0ⁱ1^j2^k | i = j or j = k} is inherently ambiguous.

31

Intuitively, at least some of the strings of the form 0ⁿ1ⁿ2ⁿ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

One Possible Ambiguous Grammar

S -> AB | CD A -> 0A1 | 01 B -> 2B | 2 C -> 0C | 0 D -> 1D2 | 12

A generates equal 0's and 1's

- B generates any number of 2's
- C generates any number of 0's

D generates equal 1's and 2's

And there are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.: S => AB => 01B => 012S => CD => 0D => 012