
Parse Trees

Dr. Ranjit Kumar

1

Parse Trees

 Parse trees are trees labeled by symbols of a particular CFG.

 Leaves: labeled by a terminal or ε.

 Interior nodes: labeled by a variable.

 Children are labeled by the right side of a production for the parent.

 Root: must be labeled by the start symbol.

2

Example: Parse Tree3

S -> SS | (S) | ()

S

SS

S)(

()

()

Yield of a Parse Tree

 The concatenation of the labels of the leaves in left-

to-right order

 That is, in the order of a preorder traversal.

is called the yield of the parse tree.

 Example: yield of is (())()

4

S

SS

S)(

()

()

Parse Trees, Left- and Rightmost

Derivations

 For every parse tree, there is a unique leftmost, and

a unique rightmost derivation.

 We’ll prove:

1. If there is a parse tree with root labeled A and yield w,

then A =>*lm w.

2. If A =>*lm w, then there is a parse tree with root A and

yield w.

5

Proof – Part 1

 Induction on the height (length of the longest path

from the root) of the tree.

 Basis: height 1. Tree looks like

 A -> a1…an must be a production.

 Thus, A =>*lm a1…an.

6

A

a1 an. . .

Part 1 – Induction

 Assume (1) for trees of height < h, and let this tree have height h:

 By IH, Xi =>*lm wi.

 Note: if Xi is a terminal, then Xi = wi.

 Thus, A =>lm X1…Xn =>*lm w1X2…Xn =>*lm w1w2X3…Xn =>*lm … =>*lm

w1…wn.

7

A

X1 Xn. . .

w1 wn

Proof: Part 2

 Given a leftmost derivation of a terminal string, we

need to prove the existence of a parse tree.

 The proof is an induction on the length of the

derivation.

8

Part 2 – Basis

 If A =>*lm a1…an by a one-step derivation, then there

must be a parse tree

9

A

a1 an. . .

Part 2 – Induction

 Assume (2) for derivations of fewer than k > 1 steps, and let A

=>*lm w be a k-step derivation.

 First step is A =>lm X1…Xn.

 Key point: w can be divided so the first portion is derived from X1,

the next is derived from X2, and so on.

 If Xi is a terminal, then wi = Xi.

10

Induction – (2)

 That is, Xi =>*lm wi for all i such that Xi is a variable.

 And the derivation takes fewer than k steps.

 By the IH, if Xi is a variable, then there is a parse tree

with root Xi and yield wi.

 Thus, there is a parse tree

11

A

X1 Xn. . .

w1 wn

Parse Trees and Rightmost Derivations

 The ideas are essentially the mirror image of the proof for leftmost

derivations.

 Left to the imagination.

12

Parse Trees and Any

Derivation

 The proof that you can obtain a parse tree from a leftmost

derivation doesn’t really depend on “leftmost.”

 First step still has to be A => X1…Xn.

 And w still can be divided so the first portion is derived from X1,

the next is derived from X2, and so on.

13

Ambiguous Grammars

 A CFG is ambiguous if there is a string in the language

that is the yield of two or more parse trees.

 Example: S -> SS | (S) | ()

 Two parse trees for ()()() on next slide.

14

Example – Continued15

S

SS

S S

()

S

SS

SS

()()

() ()

()

Ambiguity, Left- and Rightmost

Derivations

 If there are two different parse trees, they must produce two

different leftmost derivations by the construction given in the

proof.

 Conversely, two different leftmost derivations produce different

parse trees by the other part of the proof.

 Likewise for rightmost derivations.

16

Ambiguity, etc. – (2)

 Thus, equivalent definitions of “ambiguous

grammar’’ are:

1. There is a string in the language that has two different

leftmost derivations.

2. There is a string in the language that has two different

rightmost derivations.

17

Ambiguity is a Property of

Grammars, not Languages

 For the balanced-parentheses language, here is another CFG,

which is unambiguous.

B -> (RB | ε

R ->) | (RR

18

B, the start symbol,
derives balanced strings.

R generates strings that
have one more right paren
than left.

Example: Unambiguous Grammar

B -> (RB | ε R ->) | (RR

 Construct a unique leftmost derivation for a given balanced string of

parentheses by scanning the string from left to right.

 If we need to expand B, then use B -> (RB if the next symbol is “(” and ε if

at the end.

 If we need to expand R, use R ->) if the next symbol is “)” and (RR if it is

“(”.

19

The Parsing Process

Remaining Input:

(())()

Steps of leftmost

derivation:

B

20

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:

())()

Steps of leftmost

derivation:

B

(RB

21

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:

))()

Steps of leftmost

derivation:

B

(RB

((RRB

22

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:

)()

Steps of leftmost

derivation:

B

(RB

((RRB

(()RB

23

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:

()

Steps of leftmost

derivation:

B

(RB

((RRB

(()RB

(())B

24

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:

)

Steps of leftmost

derivation:

B (())(RB

(RB

((RRB

(()RB

(())B

25

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input: Steps of leftmost

derivation:

B (())(RB

(RB (())()B

((RRB

(()RB

(())B

26

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input: Steps of leftmost

derivation:

B (())(RB

(RB (())()B

((RRB (())()

(()RB

(())B

27

Next
symbol

B -> (RB | ε R ->) | (RR

LL(1) Grammars

 As an aside, a grammar such B -> (RB | ε R ->) | (RR, where you

can always figure out the production to use in a leftmost derivation

by scanning the given string left-to-right and looking only at the next

one symbol is called LL(1).

 “Leftmost derivation, left-to-right scan, one symbol of lookahead.”

28

LL(1) Grammars – (2)

 Most programming languages have LL(1) grammars.

 LL(1) grammars are never ambiguous.

29

Inherent Ambiguity

 It would be nice if for every ambiguous grammar,

there were some way to “fix” the ambiguity, as we did

for the balanced-parentheses grammar.

 Unfortunately, certain CFL’s are inherently ambiguous,

meaning that every grammar for the language is

ambiguous.

30

Example: Inherent Ambiguity

 The language {0i1j2k | i = j or j = k} is inherently

ambiguous.

 Intuitively, at least some of the strings of the form

0n1n2n must be generated by two different parse trees,

one based on checking the 0’s and 1’s, the other

based on checking the 1’s and 2’s.

31

One Possible Ambiguous

Grammar

S -> AB | CD

A -> 0A1 | 01

B -> 2B | 2

C -> 0C | 0

D -> 1D2 | 12

32

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string
with equal numbers of 0’s, 1’s, and 2’s. E.g.:
S => AB => 01B =>012
S => CD => 0D => 012

